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The wake of a circular cylinder is investigated near the oscillation threshold by means 
of a laser probe. Above the threshold the transient regime is studied and described 
by a Stuart-Landau law (already found to be relevant in explaining free-oscillating 
regimes). Below the critical point, impulse and resonant regimes are examined, so the 
coefficients of the Stuart-Landau equation are determined. 

Moreover, in the supercritical regime, the behaviour of the (externally forced) 
oscillating system is described, varying parameters such as threshold deviation, 
forcing frequency and amplitude. The different zones of entrainment and desyn- 
chronization are given for simple or harmonic frequency. 

1. Introduction 
In  spite of the vast amount of literature dealing with the problem of the wake 

behind a cylinder, interest in this problem has really increased. There are three 
reasons for this. 

The first is associated with the development of numerical simulations which now 
are able to handle three-dimensional problems on some configurations (Gollub & 
Freilich 1981 ; Libchaber & Maurer 1981 ; Haldenwang & Labrosse 1986 ; MacLaughlin 
& Orszag 1982) but not yet for the cylinder’s wake to our knowledge. The second 
is related to the use of non-intrusive laser diagnostics which give local and 
instantaneous measurements and therefore new information. The third, the most 
important in our opinion, is of a conceptual nature : the renewed interest in dynamical 
systems with their application to a large class of nonlinear phenomena such as phase 
transitions and instabilities in various domains. In the last ten ycars, the transition 
to turbulence has been studied extensively and reported through excellent works 
concerning internal flows (Rayleigh-B6nard and Taylor instabilities) but, perhaps 
due to their complexity, the external flows have been less investigated. Now, the 
practical importance, diversity and specific properties (spatial characteristics) of 
these flows are such that it seems worthwhile to work on them as well. With these 
considerations in mind, we have investigated the oscillation of the wake downstream 
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from a cylinder. This breakdown of symmetry is generally considercd as a first step 
in the route to chaos (Joseph 1981). 

The initial focus concerns the nature of the instability and the adequacy of a model. 
Moreover the coexistence of two oscillating modes in a narrow range of Reynolds 
number, which has been discussed in a long debate without any conclusion (Tritton 
1971; Gaster 1971; Berger & Wille 1972), is confirmed. On the other hand it was 
interesting to study the succession of instabilities with a view to characterizing the 
transition to chaos, following the ideas of either Landau-Lifshitz (1971) or Ruelle- 
Takens (1979). Eventually, given a model, it was of interest to check its properties 
from an experimental point of view and to define its domain of applicability. 

Let us summarize briefly the different regimes as functions of the Reynolds number 
(generally defined with the axial mean velocity U,, far upstream, the diameter d and 
the kinematic viscosity v). For very small Reynolds number (Re 6 1 )  the flow is 
creeping and the viscosity terms are preponderant. For higher Reynolds number, the 
flow is still steady but there is a recirculation zone just behind the cylinder which 
consists of two symmetrical and fixed eddies increasing with Re (Coutanceau & 
Bouard 1977). The existence of the discontinuity in the evolution of the flow (i.e. the 
emergence of the recirculating zone) is commonly admitted, but the work of 
Nakamura (1976) on the sphere and the range of the threshold value (2 < Re < 6) 
lead us to think that the recirculation zone is always present. A fine study of this 
problem seems desirable. Up to the critical value Re,, the strength of the eddies 
increases and the zone stretches downstream; at the threshold the oscillation of the 
wake begins. It is associated with the formation of a double row of opposing vortices 
convected downstream. This interpretation was given by Henri Bdnard in 1908, while 
von Karman (1911) performed the first stability analysis of the structure without 
reference to the mode of formation, which is not yet clearly determined to our 
knowledge (Tritton 1971). Nevertheless we do mention the interesting numerical 
simulations which describe correctly the mean features of the flow (Fornberg 1980), 
the dynamics of the unsteady flow (Braza 1981) and the stability analysis of the 
fully-developed vortex street (Meiron, Saffman & Schatzman 1984; Saffman & 
Schatzman 1982). 

It can be noticed simply that for Re, there is a real transition characterized by 
a loss of symmetry and non-stationarity of the flow. This transition is the principal 
focus of this work. The Reynolds-number range is restricted to 40 < Re < 300 (in our 
experimental conditions Re, varies with the cylinder’s aspect ratio from 47 to 123). 
The ignorance on the nature of the transition from stationary to oscillating regime 
and the lack of linear stability analysis of this flow required an accurate investigation 
in this range. It has been done using laser Doppler anemometry with a moving-fringe 
system well-adapted to the study. Information is lacking on several points: 

The oscillation threshold is still not well known. 
There is no theory concerning the formation modes; the existence or the 
non-existence of three-dimensional structures is still being discussed. 
Do the oscillations start with zero amplitude or is there any hysteresis ? 
What is the growth law as a function of the deviation Re-Re, ? 
What is the route to turbulence? 
Is any intermittency possible near the threshold ? 

The first four points have been developed. The experimental conditions have led us 
to evaluate the role of the confinement on different parameters such as the critical 
Reynolds number at  the threshold. The three-dimensional effects (birth of two 



BCnard-uon Karman instability : transient and forced regimes 3 

tY 
Low-frequency 

generator 

u- u n L. 1 
r,- _I- -- Inlet 

50 cm 70 cm 9ocm 6ocm 

FIQURE 1. The wind tunnel with the excitating device. The origin is on the axis of the cylinder. 

oscillatory modes) have been observed and associated with the shedding of inclined 
vortex filaments. 

One of the main results concerns the evolution of the order parameter of the 
bifurcation, the transverse oscillating velocity. This law has been determined with 
accuracy, as well as the behaviour of the system in transient regimes. 

The first elements of this study have been published (Mathis, Provansal k Boyer 
1984a, b) but a short summary is given. These previous results mainly show that the 
transition is characterized by a Hopf bifurcation and can be described by a 
Stuart-Landau law. This is the first evidence of such Sehaviour for external flows 
to our knowledge. In  the present paper we focus our attention on the transient 
dynamical properties of the system as well as on its response in forced regimes below 
and beyond the threshold. 

See Appendix for notation. 

2. Experimental apparatus 
The experiments were conducted in air, downstream (5d,0,0) from a circular 

cylinder located in a square element (cross-sectional width L = 10 cm), of an 
open-circuit wind tunnel characterized by h l0/ l  contraction ratio (figure 1). A sonic 
nozzle is used for regulating the flow; the correction of thermal effects and the 
smoothness of steel cylinders allow an accuracy of better than 0.5% on the 
determination of the Reynolds number. The upstream flow has a flat profile (1.5 %) 
and the free-stream turbulence level is less than 0.3 yo. 

The sensitivity of the system to perturbations requires the choice of a non-intrusive 
diagnostic, laser Doppler anemometry, which is a well-adapted technique. Moreover, 
a rotating grating, both splitting the beam and moving fringes, gives the algebraic 
value of the components of the flow and increases the accuracy of measurements 
(Mathis et al. 1984b). 

A TSI signal processor and a Rockland FFT 512s or Solartron 1200 spectrum 
analyser were used. In  forced and impulsed experiments, a loudspeaker (LS) or a 
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moving diaphragm made of rubber were used, positioned on the axis upstream of the 
wind tunnel by way of a Y channel (figure 1). 

3. Study of the amplitude in the transient and the impulse regimes 
3.1. The Landau model 

I n  order to throw some light on the discussion, we propose to recall briefly the place 
of the Landau model in hydrodynamics. The approach starts from the attempt to 
perform the stability analysis of a steady flow. A non-stationary perturbation 
ul(x, y ,  z, t )  of the steady solution u,(x, y, z )  of the Navier-Stokes equations is 
expanded as a sum: 

u~(x, y, 2 ,  t )  = X {Ai(t)  gi(x3 y. 2) + AF(t) g i ( X ,  y. z ) } ,  
i= l  

where gi(x, y ,  z )  satisfies the boundary conditions. Then i t  can be shown that the 
amplitude A,(t)  satisfies the evolution equation 

-- dAi - si Ai + G,(Ai) 
dt 

(j = 1,2,  . . .  

where Gi contains the nonlinear interaction of all the modes (mode i included) 
resulting from the nonlinear partial differential equation. The Landau equation 
is then a truncated form of the above equation. 

Let us consider an independent mode A(t)aeut  with relative growth rate 
u = ur+iui. 

When Re < Re,, all disturbances are stable and ur < 0. 
When Re = Re, there is just one normal mode with u1 = url + inil(url = 0 for 

As Re increases above Re,, url > 0 but v, < 0 for all the other modes. The 
expression for the amplitudt Aa eUt is no longer valid for long times; obviously the 
modulus does not grow infinitely but is bounded. The Landau hypothesis leads us 
to search for this limit: for short time IA(t)l a curt is valid, so that 

Re = Re,) which is marginally stable. 

This expression is the first term of the expansion of the solution in powers of A and 
A*. The second term is of third order in )A( .  However, we are not interested in dlAI2/dt 
but in the average on times 7 long compared to the period T = 2n/u, but small enough 
to keep u1 as a small perturbation. These two constraints define the valid area of the 
Landau equation; they are compatible if ur < ui, which is true near the threshold. 
The mean value of the third-order term is null (in fact not exactly null but giving 
a fourth-order contribution), so that the second term is of fourth power: 

or 

which is the equation proposed by Landau in 1944. 
The steady solution for the amplitude (of the limit cycle in the vocabulary of 

dynamical systems) is IAl = (Zvr/Zr)i. Moreover, i t  must be noticed that u, plays the 



Be'nard-von Karman instability : transient and forced regimes 5 

role of a bifurcation parameter, which is equal to zero at the threshold. When the 
instability starts, we can develop 

ur = k(Re-Re,)+O(Re-RRe,)2, (3) 

IAI a(Re - Re,):. (4) 

where k is some positive constant (characteristic frequency v/5d2 in our problem) and 
we obtain for the amplitude: 

This behaviour is generally compared to a second-order phase transition. Landau did 
not show how his equation could be derived for the stability of a given flow. This 
work has been done by Stuart (1958, 1960) for plane parallel flows and Palm (1960) 
for the Rayleigh-BBnard problem. Further references can be found in Drazin & Reid 
(1981) or in Kuramoto (1984). Following Kuramoto 
equation : 

- UA -+llAyA 
dA 
dt 
-- 

which gives in amplitude the Landau equation 

and in phase 

3.2. Summary of previous 

we will call StuarGLandau the 

(5 )  

work 
The first fundamental results have been reported in the thesis of Mathis in 1983. They 
have been confirmed in a similar but independent work done by Strykowski in 1986 : 

The amplitude lu,l of oscillatory transverse velocity, taken as the order parameter, 
verifies a Landau's law (4) Iuy) = a(Re-Re,):, in which Re is the order parameter of 
the bifurcation and the exponent !j is known with an accuracy better than 1 %. 

The critical Reynolds number Re, strongly varies with the aspect ratio Lld 
(measurements have been made by changing the length L or the diameter d). The 
asymptotic value Re,(L/d = 00) = 47 is pretty close to the value computed by 
Jackson (1987) who performed a numerical study of this Hopf bifurcation. 

The cofactor a depends upon the aspect ratio and the measurement point in the 
wake. 

The well-known relation RolRe (Roshko 1954) between the dimensionless frequency 
Ro = f d 2 / v  and the Reynolds number, has been experimentally checked and found 
compatible with the Stuart-Landau model. However, for cylinders of large aspect 
ratio, there is a range of Reynolds numbers where two oscillatory modes both appear 
due to three-dimensional effects ; measurements on uZ(t) and visualizations by means 
of a laser sheet allow one to interpret this phenomenon as the consequence of a small 
initial speed gradient WU,, 8 0 (such a phenomenon was also noticed by Gaster 
1971 ; Sreenivasan 1985; Tritton 1971). 

3.3. Study of the amplitude in the transient regime 
The Stuart-Landau model has been checked through the time evolution of the 
amplitude. The Landau equation in amplitude is: 
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FIGURE 2. (a) u,(t) upstream of the cylinder in transient regimes. Re, = 107, Re, = 125. ( b , c )  u,(t) 
in transient regimes. typical recordings. (b) d = 1.6 cm, Re, = 107, R c ~  = 125, Re, = 102; ( c )  
d = 2.0 cm, Re, = 139, Re, = 127, Re, = 123. Notice the inflexion point in the first case. 

writing initial and final conditions, luyl (t  = 0) = luyil and luyl ( t  = 0 0 )  = lYyfl, we get 
the solution : 

(7) 1uyl ( t )  = luyfl [ I +  (&- 1) e-zurl]'. 

The transient behaviour is characterized by the evolution term e-2urt (where 
ur = k(Re-h!e,))  and by the time T = l/ur. Similar work was done by Gollub & 
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FIQURE 3. a,(Re) with d = 0.60 cm, d = 0.80 cm, d = 1.00  cm. L/d = 16.7, L/d  = 12.5, 
L/d  = 10. *: Re, as previously determined. 
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FIGURE 5. Simultaneous evolution of lu,I2(t) andf(t). A, Iuy12 exp (arbitrary units) is deduced from 
the recordings. 0,  frequency (Hz). fvaries from 0.93 Hz to 1.18 Hz. 0,  Iuy12(t)computed (arbitrary 
units) is the plot of equation (7)  in which Iuyilz, Iuyf are experimental and cr is deduced from 
equation (8) and the values d = 1.60  cm, Rei-Re, = 1.5, Ref-Re, = 22.6, Juyi12 = 1.5, luy# = 22.6 
(arbitrary units). 

Freilich (1981) concerning the Taylor instability and by Libchaber & Maurer (1981) 
who characterized the Landau behaviour of the first oscillation in the Rayleigh- 
BBnard problem. 

Experimentally the Reynolds number is quickly changed, by modifying the 
upstream pressure in a time (0.5-1 .O s) of the same order as a period, from Re, to  Re, 
(figure 2a) and we have determined 7 by analysis of recorded graphs on luyl ( t )  (figure 
2 b ,  c). Measurements have been done for eight cylinders whose diameters are in the 
range (0.30, 2.00) cm. These recordings fit the computed pattern (figure 5) in both 
the cases Re, > Re, and Re, < Re,. I n  figure 3 ,  the graphs of the variation a,(Re) are 
given for three cylinders. The lower part of the graph gives the critical Reynolds 
number which is in good agreement with that deduced from the stationary study and 
relation (4) : Iuy12 = a2(Re- Re,). The determination of the slopes of a,(Re) allows one 
to write 

(Re-Rec)v 
5d2 ' 

ar = 

where d 2 / v  is the viscous diffusion time which is a characteristic of each cylinder, and 
has been incorporated into the Roshko number (figure 4). I n  the same manner (i.e. 
by quick variation of the upstream pressure), we could deduce the pseudo-period (i.e. 
the time between two successive null values of the amplitude) of the oscillation. 
The simultaneous evolution of the amplitude and of the frequency are plotted in 
figure 5. 
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FIGURE 6. (a) Recording of the impulse on u,(t), upstream of the cylinder. ( b )  Typical recording 
of the impulse response on u&) : d = 0.4 cm, Re- Re, = - 1.4. 

3.4. Impulse response 

Below the critical Reynolds number, the linear stability analysis is sufficient to 
describe the dynamics of a small perturbation in the stream around the cylinder. 
Assuming that the nonlinear term is negligible, the equation of evolution becomes : 

du 
dt 
- = guy, (9) 

where a = rr + iai and the solution is 

u,(t) = luyl curt eiuit. (10) 

To test this hypothesis and check the characteristic time evolution 7 = l/lrrl the 
system is perturbed by an impulse. Experimentally this is done by striking a thin 
elastic diaphragm located at the entrance of the wind tunnel instead of the 
loudspeaker (figure 6a,  b ) .  The variation of this relaxation time is plotted versus the 
Reynolds number (figure 7). The relaxation time is still expressed as 
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FIGURE 7 .  Relaxation time versus Re-Re, in a log-log plot. 

Re, - Re 

with an accuracy better than 5 % . This expression confirms the result reported above 
for a transient regime. It can be interesting to point out that not only is relation (8) 
confirmed by Strykowsky (1986) but the numerical value of the coefficient is the same, 
equal to 5.  Thus in transient and impulse regimes for the subcritical range as well 
as for the supercritical area the time evolution of the amplitude verifies the 
StuartrLandau model. Moreover the dimensionless frequency of the relaxed oscilla- 
tion is given by the same relation as the natural frequency 

Ro = aRe+ b.  (11) 

4. Forced oscillations 
4.1. Resonance in the subcritical regime 

From the relation RolRe we deduced by extrapolation the ‘natural’ frequencyfi of 
the system when the Reynolds number is subcritical (Re < Re,). By means of a 
loudspeaker, a periodic excitation u; of the speed u,, of the upstream flow is 
produced on a frequency close to the natural one. An acoustic excitation was preferred 
to a direct mechanical vibration in order to reduce the noise; the streamwise 



Blnard-von Kcirmdn instability : transient and forced regimes 11 

excitation avoids three-dimensional effects though a transverse excitation would be 
more efficient since wakes are more unstable to antisymmetric disturbances. In  the 
range of relevant frequencies, the relationship between the voltage applied to  the 
loudspeaker and the energy of the excitation u; has been determined, in the absence 
of any cylinder and at the same location in the wind tunnel (0, 0,O). Different tests 
have shown that these curves are typical and vary neither with position nor with 
the speed in the wind tunnel. The diameters of the cylinders are 0.4 and 0.6 cm 
because their shedding frequencies are subharmonics of the maximum of efficiency 
of the loudspeaker (12 Hz). For every cylinder, the amplitude of the excitation is kept 
constant throughout the frequency range. 

In  the subcritical area we assume that we can neglect the nonlinear term in the 
Stuart-Landau equation (we will discuss this point further) ; therefore this equation 
becomes : 

du 
A= au,+F, 
dt 

The excitation term, F = &(Re,w) eiwt, is characteristic of the hydrodynamic coup- 
ling between the excited upstream flow and the wake of the cylinder. In  a similar 
study about the mixed-layer problem, Tam (1978) used an acoustic beam as an 
excitor . 

A periodic solution of this equation (of the same frequency as the excitation) is 

uy = &(Re, o) eiWt e'+[a: + (w - (13) 

and the amplitude 

The resonance is obtained for alu,l/aw = 0 when the angular frequency w satisfies 
lu,l = &(Re, w ) [ a : + ( ~ - a ~ ) ~ ] - f .  (14) 

(15) 

In the experimental conditions, Re x Re, so that a, < a,, and the angular frequency 
becomes 

a4 - [ a: + (w - a i )2 ]  - (w - a,) & = 0.  aw 

Our hypothesis will be that, while keeping constant the longitudinal excitation u:) 
the term (a:/ai) (aF0/aw)/4(ai) is weak. 

a resonant angular frequency w 

an energy of the maximum IuYl2 = constant/a: = constant/(Be-BeJ2 

Thus there is a resonance characterized by : 

ai, 

(17)  

(18) 

The experiments show that the system, excited on the longitudinal component of the 
flow speed uz, responds by shedding a street of alternately and oppositely circulating 
vortices of the same kind as that found for Re > Re,. The experimental resonance 
curves, response/excitation ratio versus frequency (figure 8), fit the theoretical 
pattern. These graphs point out two features: 

the energy of the maximum depends on Re-Re, 
the bandwidth 6 increases with IRe- Reel. 
The variation of the maximum in energy with the Reynolds number is plotted in 

a half height bandwidth frequency 6 = 21ar,1 = 2vIRe- Re,1/5d2. 
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FIQURE 8. Resonances curves for a cylinder of diameter d = 0.4 cm. The response/excitation ratio 
is in arbitrary units because the response is on uy while the excitation is on u,. S = half-height 
bandwidth frequency. (a)  Re- Re, = -2.40, ( b )  Re- Re, = - 1.08. 

figure 9, this energy varies as the square of the difference to the critical Reynolds 
number (the accuracy of the determination of Re-Re, and the limitation in the 
exciting energy, due to  the loudspeaker, made it impossible to  obtain measurements 
on a range wider than two orders of magnitude). 

Keeping the Reynolds number constant and increasing the energy of excitation 
to the limits of the loudspeaker, three orders of magnitude in energy, no significant 
change in the ratio response/excitation for the resonant maximum was observed. 
Moreover in all the experiments the value of lu,lz is small compared to  the energy 
of the free oscillation obtained for Re > Re, and the same value of IRe-Re,l; thus 
the validity of our assumption concerning the nonlinear term is confirmed. 

The dimensionless half height bandwidth frequency ARo = 6d2/v, plotted as a 
function of the Reynolds number, follows the theoretical relation (18) with an 
accuracy better than 5 yo (figure 10). 

Moreover we found (figure 1 1) that  the dimensionless resonant frequency R o  follows 
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FIGURE 9. Maximum response energy1Excitation energy ratio versus Re, - Re in a log-log plot. 
d = 0.40 cm, Lld = 25. 
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1. Ro versus Re beyond and above the critical point. d = 0.40 cm. 

the same relation (equation (1 1)) as the supercritical. This result leads us to correct 
the interpretation of the RoshkeReynolds relation proposed in Mathis et aZ. (1984a). 

On one hand for Re > Re,, the Stuart-Landau equation could be written: 

which gives the two equations (2) and (6), for the amplitude, 

dlu I - = CrIUyI -&Iuyl3, dt 

and for the phase, 

On the other hand, in the subcritical area, the nonlinear term could be neglected and 
the Landau equation gives : 

and w = ui. (19) 

Near the critical point, the reduced Reynolds number E = IRe- Recl/Re, is small and 
we may develop ur and ui as two linear functions of Re - Re, : 

ur = k(Re-Re,)+O(Re-Re,)2, 

equation ( 3 )  where k = v/5d2 and 

ui = uic + y(Re - Re,) + O(Re - ReJ2. 
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Therefore two expressions are obtained 
(a) if Re > Re, 

b y l 2  = 2arllr 

w = ri -!jliluy12 = u, - a, l i / l ,  = ciC + (y  - kli/ l ,)  (Re - Re,) (6’) 
and it follows that 

RO = fa2 - = - od2 = Roc+ (y  - kl,/l,) (Re -Re,) d2 
v 2RV 2xv 9 

where Roc = a,, d2/2xv. 
(b) if Re < Re, 

w = = ~i,++(Re-Re,)+O(Re-Re,)2 

so that RO = fdZ - = - ma2 - y(Re - Re,) d2 - Roc+ 
v 2xv 2xv 

At the critical point, the curves Ro(Re) should exhibit two different slopes due to the 
variation of the shedding frequencyf, = uJ2x in the subcritical area and due to both 
the influences of the frequency fi and the nonlinear term $liluyJ2 in the supercritical 
area. 

The experimental values (Re, Ro) near the critical point are plotted (figure 11) and 
the absence of any discontinuity in the slope of this graph suggests that the second 
term, &/l,, is negligible. This result validates Koch’s assumption (1985) that 
nonlinear terms do not influence the shedding frequency of the wake. 

4.2. Forced oscillations in the supercritical regime 
Above the critical point, nonlinear oscillations forced by external excitation have 
been investigated. The literature devoted to this subject (Berge, Pomeau & Vidal 
1984; Kuramoto 1984) gives the different typical behaviours. While increasing the 
amplitude of excitation the spectrum of the signal exhibits (figure 12) ; 

the natural frequency for Fo = 0, 
the two different frequencies f, and f and their linear combination (by increasing 
the excitation the natural frequency fi is shifted to the external one f ), 
for a critical value F,, of the amplitude of the excitation, the free oscillation fades 
and the forced oscillator is synchronized to the external excitation. 

These characteristics of nonlinear oscillations have been previously observed in the 
specific case of the wake cylinder (see survey article by Berger & Wille 1972). However 
if these researches, in the field of vortex-shedding excited oscillations, have attracted 
engineers’ attention because of their considerable practical importance, they have 
been mostly conducted for high Reynolds numbers where problems of heat transfer 
and aeroelasticity occurred (Blevins 1985 ; Peterka & Richardson 1969; Toebes 1969). 
In our range of Reynolds numbers we noticed the works of Berger & Wille 1972, 
Hussain & Ramjee 1976 and Koopmann 1967. Unfortunately there is no systematic 
investigation of this problem and the data on the critical amplitude have a wide 
scatter. 

Here we focus our attention on the conditions of excitation required by the 
synchronization. In  the frame of a simplified StuartrLandau model, typical results 
will be first presented; furthermore they will be extended to different experimental 
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FIGURE 12. Typical spectra of the forced oscillations. ( a )  4 = 0, fi = 6.46 Hz; ( b )  4 = 0.5&, 
f = 14 Hz, fi = 6.52 Hz, f-fi = 7.48 Hz; (c)& = 0.7 F,,, f = 14 Hz, fi = 6.64 Hz, f-fi = 7.36 Hz; 
(d)  & 2 Foe, f =  14 Hz synchronization on 7 Hz. In (b )  and (c) notice the change of the natural 
shedding frequency from the free value 6.46 Hz to the synchronized value 7.0 Hz. 

conditions of resonance. The system is excited on a frequency close to the free one 
f,; taking a simplified expression F, eiWt of the exciting term and assuming that 1, is 
equal to zero (§4.1), the Stuart-Landau equation can be written: 

A solution lug( ei$ of this equation verifies the following differential equations : 
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(4 

17 

f (W 
FIGURE 13. Critical forcing amplitudes mfforf fi. d = 0.4 cm, (a)fi = 6.35,6.37 Hz. (b)fi = 6.47, 
6.52 Hz. The different values of the natural frequencyfi are due to a small variation of the upstream 
velocity induced by thermal effects. 

Entrainment to the external periodicity occurs if these equations have a stable 
solution. Stationary synchronized solutions (uyl = constant, $ = wt + $) $ = constant 
are obtained in the following conditions: 

lu,l ( ~ - 4 ~ )  = l(, sin$. 

The phase condition gives the limit of synchronization : 

lsin $1 = 1 * FOc = luyl Iw - nil. 

As in the subcritical regime the system is excited by a loudspeaker. 
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FIGURE 14. Critical forcing amplitudes 218. f for f 2fi. (a) d = 0.4 cm, ( b )  d = 0.6 cm. Notice 

the different points characteristic of hysteresis on the ( b )  plot. 

For every frequency the critical level of entrainment POc has been determined; the 
measurements have been made on the pdint (5d,0,0) where the amplituae of the 
natural oscillation is maximum and we have checked that the critical value does not 
change with the location. 

First we verify that for weak amplitudes of the excitation (4 < Foe) the entrain- 
ment is not realized when w is different to the external one. In  figure 13 the 
experimental points &c/lu,ql, where Iueql is the natural ampIit:ide, are plotted versus 
the difference in frequency (f-fi) (in our conditions the energy of the entrained 
oscillation 1uyI2 is the same as the free energy (ueple so that the condition for 
entrainment (26) becomes &c/lu,ql = 2alf-fil). The linear relation is well verified, 
but we cannot check the numerical values because the forcing Fo is deduced from a 
calibration on luzl, while the response is measured on 1uJ. Similar curves (but not 
V shaped) have been plotted by Koopmann 1967, in the case of a vibrating cylinder, 
on a large frequency range (Af / f  = 25 yo aroundfJ ; Koopmann reported a threshold 
value of the critical amplitude which we do not observe. 
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The experimental curves are not perfectly symmetric ; the entrainment seems more 
difficult to obtain for high values of the forcing frequency (figure 13b). Such a 
behaviour has been observed before by Blevins (1985) (Re x 2 x lo4) who reported 
that ‘the shift to the applied frequency is greater when the sound is applied at 
frequencies below the shedding frequency ’. Moreover for large differences I f  - f i l ,  two 
critical amplitudes Foe+, Foe- appear in the experiments; the first one occurs when 
increasing the excitation in order to get entrainment, the second characterizes the 
desynchronization while decreasing the forcing. This phenomenon has been first 
observed by Bishop & Hassan (1964). Such a hysteresis is typical of nonlinear 
oscillations. Obviously in this case the simplified model is not sufficient and additional 
terms must be taken into account in the Stuart-Landau equation. For small values 
of If-fil this phenomenon probably exists but the uncertainty of 
measurements do not allow one to appreciate the different values of entrainment. 
Limitation of the energy of the generator oblige one to work near the critical Reynolds 
number, where the amplitude of the free oscillation is small; thus experimental 
constraints reduce the study of the entrainment to a narrow range of frequency 
Af = 0.4 Hz or Af/f = 8%. 

The investigation was carried on by exciting the system on a frequency close to 
the first harmonic of the natural one. The behaviour of this system is the same as 
that on the simple frequency. The spectrum of the signal shows the forcing frequency 
and the free shift frequency for weak forcing levels. The entrainment of the oscillation 
on the half frequency of the excitation appears above a critical value of the forcing 
level &c ; this frequency demultiplication, also called frequency division, is classic in 
experiments on oscillators and has been observed by Hussain & Ramjee (1976) (see 
Berger & Wille (1972) for references in different Reynolds number range). Plots of 
the curves (f - 2f,, Foc/lu,,l) present the same V shape (figure 14) ; for large values of 
f-2fi, hysteresis appears in the determination of the critical levels Foe. As for the 
simple frequency the entrainment is more difficult to get for high than for low 
frequency. 

Different tests on sub- or super-harmonics frequency did not allow us to observe 
the synchronization with the present experimental device. Further experiments on 
a stronger excitator are needed to determine the role taken by the double frequency. 
However we note that nonlinear terms of the Stuart-Landau equation change with 
the frequency of the external forcing: the expression of the resonant term in the 
development of the normal form changes with the ratio of the natural frequency to 
the frequency of the excitation (Gambaudo 1983). 

5. Conclusion 
The results of this present work confirm our first observation on the temporal 

behaviour of the BBnard-von KkmSn instability near the threshold. To our 
knowledge this is one of the first studies of an external flow considered as a dynamic 
system. The Stuart-Landau equation is well adapted to describe the behaviour not 
only beyond the threshold but also below, when the system is submitted to forced 
excitation. The coefficients of the Stuart-Landau model have been determined and 
it must be noticed that the imaginary part Zi of the nonlinear term luy12uy is negligible. 
This result agrees with the usual assumption. Thus nonlinearity is essential to 
determine the appropriate amplitudes of the instability but is of negligible influence 
upon the frequency of the oscillation which is a characteristic of the wake behind a 
bluff body. Moreover we have observed the existence of synchronization on an 
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external forcing. The stable zone (amplitude, frequency) exhibits the same v shape 
as a Van der Pol oscillator whose equation can be reduced to a Landau model. This 
property exists for a frequency equal to, as well as double, the free oscillation. 

This study of temporal behaviour can be considered as a first step towards a study 
of three-dimensional effects. In  fact the StuartrLandau equation can be extended to 
a Ginzburg-Landau equation by addition of a diffusive term. From an experimental 
point of view this field of nonlinear oscillators could be investigated by a study of 
the phase dependence as a function of z along the rod axis for instance. However a 
numerical study of the basic wake profile would be of interest for computing the 
phenomenological coefficients of the Stuart-Landau equation from the actual 
problem of the wake of a cylinder. Such a study would also permit one to clarify the 
coupling between the excited upstream flow and the self excited vortex-shedding 
process. 

To conclude, i t  may be worthwhile pointing out why this model is interesting. It 
has been seen that such a phenomenological approach does not describe the vortex 
shedding mechanism any more than the exact Navier-Stokes equations do. But by 
showing certain characteristic properties i t  allows us to  put the system in a class of 
oscillators which share its properties and by analogy to suggest specific behaviour 
and some embryo of an explanation. 

We are grateful to P.  Coullet and P. Pel& for fruitful discussions. We also thank 
F. Abetino, A. Megninta and J. P. Pahin for their technical assistance. 

constants in the non-dimensional frequency-velocity relation 
cylinder diameter 
frequency 
natural shedding frequency 
excitation induced by the loudspeaker 
amplitude of the excitation 
critical amplitude for which the shedding of the wake is synchronized 
critical amplitude when increasing the forcing 
critical amplitude when decreasing the forcing 
characteristic diffusion frequency 
coefficient of the nonlinear term in the Stuart-Landau equation 
imaginary part of 1 
real part of I 
cylinder length 

response energylexcitation energy ratio = 

Reynolds number = U,, d l v  
critical Reynolds number, Re, varies with the aspect ratio Lld of every 
cylinder 
initial Reynolds number 
final Reynolds number 
Roshko number = dimensionless frequency = f d 2 / v  
Roshko number’s value a t  the critical point (Re = Re,) 
period of the oscillation 
amplitude of the natural shedding transverse velocity fluctuation 

u 12 

M2 
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u?, uy, u, 
U X  

Ux, U,, U, streamwise, transverse and spanwise mean velocities 
UXCC free-stream mean velocity 
X , Y , Z  

a 
Y 
6 half-height bandwidth frequency 
ARo 
8 

streamwise, transverse and spanwise velocity fluctuations 
streamwise velocity fluctuation induced by the loudspeaker 

streamwise, transverse and spanwise coordinates 
cofactor in the amplitude of the shedding oscillation luyl 
coefficient of the angular frequency-Reynolds number development 

dimensionless half-height frequency = 6d2/v 
reduced Reynolds number = IRe-Re,l/Re, 
phase of uy 
kinematic viscosity 
coefficient of the linear term in the StuarhLandau equation 
imaginary part of Q = natural angular frequency 

# 
V 

CT 

Ui 
Vic critical angular frequency 
v r  real part of CT 

7 transient time evolution 
response-excitation phase shift when the response is synchronized 
angular frequency 

~ 
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